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Geophysical analysis of zonal tidal signals in length of day 
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S U M M A R Y  
The Earth’s zonal response coefficient K is estimated from the tidal signals in the 
observed length-of-day (LOD) data. Its magnitude and phase are functionals of the 
Earth’s internal structure and dynamics. In this paper, an analysis of 13 years of 
precise LOD data (1980-1992) reveals strong signals for nine zonal tidal groups 
ranging from 5 to 35 days in period. Numerical estimates of K for 27 major tides are 
thus obtained, 11 among which are considered sufficiently high in signal-to-noise 
ratio to provide meaningful geophysical constraints on the Earth’s rotational 
dynamics. The results favour a K magnitude close to, but somewhat smaller than, 
0.315, which is the theoretical value for an elastic mantle completely decoupled from 
the fluid core plus equilibrium oceans. A small amount of dispersion is also 
detectable, where shorter periods tend to have lower K magnitude and larger phase 
lag. Our K magnitude estimates are consistent with two recently published 
non-equilibrium ocean-tide models and an anelastic response in the mantle, 
although an equilibrium response in the ocean and a purely elastic response in the 
mantle is not disallowed. Phase lags of a few degrees are required by both 
ocean-tide models, and by our data. 
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1 INTRODUCTION 

The rotational speed of the solid earth varies slightly with 
time, causing variations in the length of day (LOD). Precise 
measurements of LOD in the last three decades have 
revealed .variations on time-scales ranging from decadal, 
interannual, seasonal, intraseasonal, down to days and 
(recently) sub-daily. Apart from a secular ‘braking’ (e.g. 
Lambeck 1980) and small semidiurnal librations (Chao et ai. 
1991) due to external luni-solar tidal torques, LOD varies as 
a consequence of internal geophysical mass movements 
under the conservation of angular momentum. These mass 
movements occur in all components of the Earth: 
atmosphere, hydrosphere, solid mantle and fluid core. 

In particular, as first pointed out by Jeffreys in 1928, LOD 
will change as a result of changes in the Earth’s axial 
moment of inertia caused by zonal tidal deformations in the 
Earth. The amount of tidal deformation, under given 
forcing, depends on the Earth’s physical structure and 
dynamical behaviour. The response of an elastic, spherically 
symmetric earth to external forcings is described by a set of 
transfer functions, namely Love numbers, which are 
dimensionless gross-Earth functionals. Among them only 
the second-degree zonal potential raised by the luni-solar 
tides is of concern here. Such a tidal potential induces a 

second-degree zonal response in a spherically symmetric 
earth; and only such response can affect LOD via 
conservation of angular momentum, as all other harmonics 
are ‘orthogonal’ to ALOD. The induced ALOD in an elastic, 
spherically symmetric earth is thus proportional to the 
second-degree zonal transfer function, or the Love number 

The concept of the transfer function can be extended 
naturally to include other dynamic behaviour of the Earth in 
the geophysical excitation of ALOD. Called the zonal 
response coefficient K (as a function of frequency o) by 
Agnew & Farrell (1978), it is defined as the ratio of the 
fractional change in LOD to the prescribed second-degree 
zonal tidal potential normalized with respect to the Earth’s 
surface gravitational potential: 

ALOD(w) 

where G is the gravitational constant, a is the Earth’s mean 
radius and C its axial moment of inertia, and the prescribed 
tidal potential equals the tidal potential amplitude V, 
multiplied by the fully normalized surface spherical 
harmonic Yz0. 

If the Earth were entirely elastic, then its K would be 
identical to the (static) k2 .  This can be seen from the 
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k2. 

v3 a3 (1) = - K ( W )  ~- v z ( W ) ,  
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